
 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 1

Things Testers Miss
James Lyndsay, Workroom Productions Ltd.

jdl@workroom-productions.com

London, 2006

Abstract
Bugs slip into production in spite of the best efforts of
designers, coders, and testers.

While testers may not be responsible for the
introduction of bugs to the system, they bear some
responsibility for the introduction of bugs to the user.

Testing can be adjusted to reduce the number of bugs
that pass through to production – without necessarily
requiring more resource.

Terms
Bug: something that surprises and bothers the intended
user – or one of their friends.

Problem: something that causes bugs to be missed by
the test team.

Purpose and scope
As a tester, I’ve learnt a large chunk of my discipline by
doing things wrongly, and working out why. This paper
uses real-life case studies to illustrate situations where
the test team missed a bug that was later found – and
could perhaps have been found while testing. It makes
an attempt to fit these case studies into a structure, and
gives some positive suggestions about how test teams
might reduce the occasion or impact of these misses.

The paper does not attempt to cover ways that the
designers and coders might seek to reduce the number
and impact of bugs in the untested code. Also, this
paper is not intended to be an extended whine about
needing more time, more kit, more skill, or more testers.

The paper concentrates on the bug-finding, risk-oriented
aspects of testing, while giving less emphasis to the
verification-led, value-focussed aspects of testing. This
reflects the paper’s overall focus on bugs, rather than the
relative importance of these very different goals.

1. Testers don’t make bugs
Testers don’t make bugs.

Then again, hardly anyone does. It is more correct
perhaps to say that testers can’t avoid bugs. Testers have
to find them.

If you are making something, you can make bugs –
sometimes by making a mistake, sometimes by making a
decision that turns out to be flawed, sometimes by not
noticing that deep within all the ramifications of your
actions lies potential for trouble.

Testers are often all too happy to point out these flaws in
other people’s work, and are even happy to suggest
ways that those people could change their work and so
avoid introducing similar bugs elsewhere. However,
testers are not immune to failure.

Sometimes, testers make mistakes. Testers make flawed
decisions. Testers fail to notice that within their actions
lie dormant problems. When dealing with the
disarmingly simple question ‘How did the testers miss
this?’, the glib misdirection ‘Testers don’t make bugs’ is
no answer whatsoever.

To have a bug to log, the test team must trigger it and
observe it. Testers miss some bugs because those bugs
are never trigged in testing. Testers miss other bugs
because, although the bug is triggered, nobody notices.

2. Coincidence and test design
For any reasonable system, possible tests far outnumber
actual bugs. Bugs are often found during tests that are
not designed to look for them – but which trigger them
by coincidence.

Conversely, consciously designed tests do not reliably
reveal the bugs that surface in production. It is entirely
possible (and not uncommon) to have a supposedly
exhaustive set of tests that fail to find bugs that appear
on the very first day of live use.

Big bugs are often found by coincidence, because the
more ubiquitous the bug, or the greater its impact, the
easier it is to see – even when using a dumbed-down
and mostly-blinded tool. Bugs found by coincidence
rather than design also tend to seem bigger because they
are more of a surprise.

Test design often concentrates on ways to act on the
system to trigger bugs. It is vital to also consider the
opportunities for observing bugs – whether triggered by
design, or by coincidence.

2.1. Observation and diagnosis
Finding a bug by coincidence does not mean that the
bug is reproducible. The observed bug may be unrelated
to the test activity, and it is hard to judge the
effectiveness of individual test techniques when, in the
real world, those techniques intermittently find
unrelated but important bugs.

In some circumstances, a bug may be logged for
diagnosis and decision-making without necessarily
being reproducible. However, in other situations, the
test team may be required to reproduce the bug before it
can be logged. Diagnostic testing is often used to
develop a single clear, reproducible test, and sometimes
it is possible to look over previous observations to see if
an occurrence has already been recorded.

Bugs that are triggered intermittently may not be noticed
at all. Even if they are recognised, they may be masked
or conflated with a more frequent – or more easily
reproducible – failure.

There is an illusion of control with well-designed
tests; the illusion that every aspect of the system is under
the control of the tester. As systems become increasingly

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 2

complex, but present simple interfaces to the user, this
illusion becomes less sustainable. If the illusion persists
even when testing a system that takes its own decisions
in a complex environment (i.e. a game or networked
device), the emphasis on test design at the expense of
observation will allow bugs to drop through to
production.

3. Problems of Technique
Of the bugs that arrive in the live, many, but not all, are
missed during testing – the tester makes a mistake, uses
inappropriate techniques, fails to spot an exploitation
that triggers a bug and so on.

3.1. Oops – butterfingers
We all make mistakes. By mistake, I mean a moment of
sheer incompetence. A mistake is not something that
can be put down to a failure of imagination, or a lack of
knowledge – it is purely and simply an occasion when
we under-perform. Given the same job, two competent
people would be unlikely to make the same mistake.
Mistakes are common, but are also commonly picked
up.

In Case study 01: What do you mean, Quarterly Billing?,
I describe a mistake of mine; its consequences were
significant, and would have been worse had it been
recognised later. However, it was so obvious to the
competent people around me – and to me, once pointed
out – that remedial action was clear and easily
prioritised.

The bug was becoming more dangerous as the team
started to base more work on it. This happens
particularly if the mistake is made early, left
unquestioned and used as the basis for decisions. Such
mistakes become harder to spot, and there may be
resistance to correcting them.

Prevention and detection of mistakes are distinct tasks.
In Using Poka-Yoke Techniques for Early Defect
Detection [1], Robinson describes ways of that testing
can help avoid mistakes in software. In my own
practice, I have found that diagramming and personal
sense-checking followed by peer reviews cheaply weed
out most mistakes in testing – and that a swift sanity
check with a few people from diverse backgrounds is
better for finding mistakes than an in-depth review with
experts.

Eliminating mistakes – even in software – does not
eliminate bugs. Many bugs can be traced to deeper
causes than temporary incompetence.

3.2. Trouble with Technique
Some test design techniques (i.e. domain analysis,
cause-effect graphing, pair-permutation) set out rules
with which to derive tests. This is a great way of digging
deep into a particular area, and also provides the
stimulus to trigger lots of coincidental bugs.

However, every methodical, limited approach to test
design will bypass some family of bugs. To stand a
chance of finding these, the underlying limits must be
recognised, and in some sense broken by further tests.
The more tests share a single underlying approach, the
more likely it is that bugs that are avoided by that

approach will only be found when the system goes into
real use.

Testing focussed on prediction – Are my expectations
fulfilled? – tends to give good information about value.
Tests focused on the deliverable – Does this system do
anything I don't expect? – tend to give good information
about risk. Each will coincidentally give some
information about the other, but neither is sufficient by
itself. Concentrating testing on the basis of expectation
will not tell you as much as you might need to know
about risk, while concentrating testing on the
deliverable may not tell you whether the system delivers
value to its users.

In Case Study 07: Big Pictures, testing was driven by a
functional breakdown of the system – the performance
of the system was not considered testable, leaving an
easily correctible bug in a position where it was far
more obvious to the end-users than to the test team.

In Case Study 08: Inspector Gadget, the bug could be
found easily by inspection (which was made much
easier by appropriate code layout). The chosen manual,
exploratory test approach was unlikely to trigger the
bug. Even if the bug was triggered, there was little
chance of recognising it – the test had no ready oracle.

In Case Study 09: Not Random Enough, brain-engaged
testing led me further from discovering the bug. Random
testing – with the appropriate constraints on randomness
– would have revealed the bug more quickly and more
easily. It would have still been up to me to notice that
the bug had occurred, however.

BS 7925-2 [2] describes a number of test techniques,
Appendix C of the standard deals with test effectiveness
as follows: “Research into the relative effectiveness of
test case design and measurement techniques has, so
far, produced no definitive results…“. It cannot be said
that one technique is generally better at finding general
bugs than another, but it is certain that different test
techniques miss different bugs. One way of judging
what might be missed is to look at the coverage metrics.
BS 7925-2 has a coverage metric for most techniques
listed.

In Software negligence and testing coverage [3], Kaner
outlines over one hundred measures of coverage. While
the coverage measurement for a single technique can
give you an idea of what might be missed by an
individual test approach, the done-ness of the overall
test effort should be judged against a range of coverage
metrics. To quote Appendix C again; “There is no
requirement to choose corresponding test case design
and test measurement techniques.”., Testing may miss
that which is systematically missed from coverage.

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 3

Using diverse test techniques can help avoid this trap –
see Lessons Learned in Software Testing [4] Lesson 283
for more.

3.3. Randomness
Random testing involves giving random input to a
system. The randomness is usually constrained in some
sense; the constraint is either characteristic of the test
subject or environment, or an element of the test design.

Random testing triggers bugs by coincidence, rather
than by explicit design. Where automated, random
testing is cheap and speedy, but the difficulty of
observation can mean that only the biggest bugs are
observed, and that the results that are hard to diagnose
or simplify. The paper Fuzz Testing of Application
Reliability [5] describes a random test approach that
revealed crashing or hanging bugs in many otherwise
resilient test subjects.

In Case Study 09: Not Random Enough, I describe a test
approach that would have benefited from more
randomness. Many brain-engaged testers find it hard to
be usefully random – so the technique often needs some
kind of tool support. Randomness can be applied in
many ways – the tester may want to consider which of
the available ways will be simplest to execute and
observe before progressing to more complex designs for
random tests.

3.4. Exploitation
In Case Study 06: Compounding Errors, I describe a
situation where a bug was recognised, but its
importance was not. Exploitation puts an observed bug
out of the context of its initial discovery, and into the
context of how it could affect the real world.

Exploitation relies on a testers understanding of that real
world, and often requires detailed knowledge of the
underlying technologies, supporting systems and
business context. The impact of bugs in Case Study 06
and in Case Study 03: Too Many Errors could potentially
have been spotted during the design phase by
considering potential failures and exploitation.

It can be productive for testers to work with designers or
coders to identify such potential bugs before they are
made real in implementation. It can also be possible to
take advantage of the business and technical knowledge
of those same designers and coders when exploiting a
small bug. See Whittaker’s How to Break Software [6]
for many approaches to exploitation.

A system is often most exploitable at its limits, or when
part of it is already failing. Bugs found at the limits may
be discounted as ‘would never happen in normal use’,
but these limits may be the only points in the test lab
where a common-in-live bug may be triggered. See A
Positive View of Negative Testing [7] for more.

3.5. Emergent behaviours
In Case Study 03: Too Many Errors, Case Study 04: Too
many files, Case Study 05: Conflict of interest and Case
Study 06: Compounding Errors, I describe situations
where the delivered system displayed characteristics that
were neither designed, nor avoided in design. The bugs

were not due to mistakes, but to unexpected
interactions.

Many important bugs turn up out of the blue. With
increased analysis and awareness, they might have been
avoided – but few projects are in a situation where
enough time and skill can be applied to feel genuinely
confident that they have been eliminated. Some
behaviours may emerge only when an existing system
comes into contact with a novel situation, interacts with
a new system, or receives the close attentions of a
skilled hacker – or exploitative tester.

Few tests are designed with emergent behaviours in
mind, so coincidental triggering and observation is vital.
A test approach which relies on scripted testing and
narrowly-automated observation is likely to miss
emergent behaviours.

4. Facilities and Procedures
Some bugs are missed because of problems with the
facilities and procedures used by the test team.

4.1. No chance
Some bugs stand very little chance of being seen before
live operation, because the opportunities to trigger or
observe them are unlikely – or impossible – in the test
environment.

In Case Study 04: Too many files, I describe a lab that
had no chance of triggering the bug described. The lab
was using an efficient and convenient approach to test
data generation, but this approach avoided the bug. The
bug was unanticipated – and the cost of simulating the
production environment was too great to be justified.

In Case Study 07: Big Pictures, I describe a lab that had
no chance of observing the bug with their chosen test
approach. It is worth noting that they would have easily
seen the bug with analysis, or use of a simple tool.

In Case Study 02: Too many boxes, I describe a lab that
was unlikely to trigger or observe the bug simply by
observing operation of the kit during normal testing. The
live environment had more than 100 times the number
of installations – the test team would have had to be
lucky to observe the bug.

Many test labs are just not big enough to coincidentally
observe a bug that might be regular in production.
Software that is sold in bulk can have a user base many
orders of magnitude larger than the potential test lab –
think of games consoles and mobile phones.

Illustrative Calculation:

• Imagine a team that is actively testing for 30 days.
• The kit they're testing has a chance of failure of

about 1% a day. At three times a year, that’s not a
terribly unusual problem, but the chance of not
seeing the bug on any given day is 99%. The chance
of not seeing the bug in two given days is 99%*99%.
In three, it’s 99%*99%*99% and so on.

• Chance of seeing no failures at all in 30 days =
(99%)^30 = 74%. That’s 100-74% = a 26% chance
of seeing the bug at least once.

• With 30 days testing, they would have just better
than a 1 in 4 chance of observing a failure.

• With a test lab that contained four sets of kit, rather
than one, that chance rises to about 2 in 3.

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 4

To shine the light of the real world on this hypothetical
example for a moment, it is worth wondering how long
30 days of active testing might take in practice. Also
consider the changes in code, data and configuration
that could happen over that period – and how that might
affect the credibility or diagnosis of a bug observed just
a couple of times.

4.2. Data
Data corruption is at the heart of many frustrating bugs.
The effects of corruption can be both unpredictable and
distant from the point where corruption was introduced.
This disconnect can make the original cause next-to-
impossible to diagnose, and a single persistent source of
corruption can be recognised as general unreliability
throughout the system.

Corruption can be picked up close to the point where it
occurs by taking some kind of data snapshot before and
after tests, and using a basic comparison tool to
highlight differences. This approach can help to isolate
the source, and to make the bugs more easily
reproducible and recognised. With simple tools, the
approach can be used with flat files, database dumps,
configuration data, windows registries, installed software
libraries or versions. See The Importance of Data in
Functional Testing [8] for more.

Bugs are not restricted to code. Data can introduce
bugs, particularly in systems that rely on configuration
data. In Case Study 10: It’s the Data, Stupid!, I describe
a critical bug that existed only in third-party data. The
data was not part of the test subject – but the bug could
have been found in testing by exploring the data before
it was promoted to the live environment.

4.3. Signal vs noise
Some organisations that have a lot of bugs related to the
testing and software build processes also let a lot of bugs
through to production.

Genuine bugs can be masked by test bugs – that is, they
cannot be triggered or observed because a test-related
bug happens first. If the bugs in the test system are well
understood, and the test aimed at a specific bug, it may
be possible to avoid test-related bugs, while still
triggering the bug or validating the functionality.
However, the test lab’s ability to trigger and observe
coincidental bugs will be reduced. A better solution is,
of course, to reduce the incidence of test-related bugs.

Where an automated test is over-sensitive to test-related
problems (or is out of sync with the system to be tested),
testers may decide to allow the test to pass by reducing
the scope of the observation, or turning it off entirely. It
is not uncommon for these temporary modifications to
become permanent, so allowing later bugs to slip
through unobserved. It may be possible to avoid this
creeping problem by using a time-limited version of the
test, but a better long-term solution is, of course, to build
more robust/maintainable test suites.

Test-related bugs affect the credibility of genuine bugs
found by the test team – especially if some test-related
bugs have been logged as code bugs and returned by
the coding teams. This can increase the resistance to
genuine bugs that are intermittent, dubious, or even

hard to fix. Once again, the best solution is to sort out
the test lab, but if this cannot be addressed, it may be
useful to allow a bug to have multiple
priorities/severities, each set by a different interest
group.

4.4. Rules hidden in procedures
Underlying rules in test procedures can have a similar
effect to monotonic test design techniques: Testing that
is conducted systematically can systematically miss
groups of related bugs.

Some of those underlying rules are, however,
foundations of commonly-recommended good practice/
For example:

• Resetting the environment after every test
good for clean results, but will miss bugs that leave the
system so corrupt at the end of the action that the next
action is to crash

• Varying only one thing at a time
good for diagnosis, but will miss bugs related to
interactions between changing variables.

• Following user profiles
good for 'realistic' tests that show value, but will miss
bugs that are obvious to users who don't fit expectations

• Using well-designed test data
good for clean results and flexible tests, but will avoid
bugs that show up in large volumes of dirty data.

It would be foolish to avoid all the benefits of these
helpful practices by throwing them out entirely.
Nevertheless, it is worth looking out for these and others
in one’s own testing, and to consider what might be
missed.

4.5. Broken requirements
In Case Study 05: Conflict of interest, I describe a
situation where requirements were known, but in
conflict and incomplete. Testing that is based solely on
requirements may happily pass conflicting requirements
individually, with the results of their conflict unresolved
and observable to all in live.

Missing requirements, like missing tests in test-driven-
design, can mean that a system looks good when
assessed point-by-point, but is clearly incomplete when
looked at holistically.

The problems can be addressed by driving test skills up-
stream, to be involved in requirements gathering and
analysis. However, the process of design is a process of
change – as more design is made real, understanding of
what is required will change. Gathering requirements
involves an extraordinary exercise of the imagination by
all concerned; testers can facilitate and enhance that
exercise.

5. Problems to be addressed at
project level

Some things are missed because of what can be seen as
'project-level' problems. The test group did a great job –
remedial action lies outside the group, and someone
else must take action to avoid the problem in future.

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 5

Typical thoughts that occur in these situations might be:

We'd have found this bug – if we'd been
able to spend more time testing.

or

We found and reported the bug, but it
wasn't taken seriously.

These bugs beg to be used as examples to help the
overall organisation understand where its values lie.
Should more time be allotted to testing? Should more
attention be paid? If genuine, such bugs can be visceral
evidence to decision makers, and can directly affect not
only future plans, but also the credibility of the team
itself.

Nevertheless, people with the power to influence testing
from outside the group will often take an alternate
viewpoint. They will ask pointed questions. It is good to
be prepared for these questions – and not simply
because it makes answering them easier.

There is a chance that responsibility and opportunity for
addressing these problems does not, after all, lie with
someone else. Asking these same questions within the
team allows the testers to make pre-emptive steps and
take ownership of necessary elements of the problem.
Not only is this an effective route towards a fix, it
strengthens the position of the team in negotiation. It is
possible that changes outside the test team will not
happen unless it is clear that an aligned effort is taking
place with the group.

5.1. We needed more stuff
Some test teams feel that with more time – or more
resource – they would have found any bug that dropped
through to production. Rather than present a case study,
I encourage readers to write one based on their own
experience, and consider their reasoned responses.

Where deadlines were flexible, questions might be:

• If more time was needed, was more time requested?
• At what point was it recognised that more time

might be needed?
• Why wasn't the need for more time recognised in

planning?
• What could be done to improve the plan and

estimates?

If available time was fixed, questions may run more
along the lines of:

• What did you do that you could have avoided?
• Could you have gained time from elsewhere – by

starting earlier, or working longer hours?
• Could this be a prioritisation issue?

5.2. We weren’t taken seriously
Case Study 06: Compounding errors provides an
illustration of this situation. All parties were aware of
one of the key factors that led to the system’s eventual
failure. Situations like this present a fine opportunity for
the organisation to learn and to adjust its behaviour.

Questions that might be asked of the test group include:

• Did the test team recognise the importance of the
failure, or its potential to cause harm?

• Did they communicate the information they had?
• Was there enough time to fix the bug – and if not,

what would have been required to find the bug
earlier?

However, by ignoring the bug first time round, those
outside the test team may have already indicated a
resistance to learning. It may be hard to gain a rational
response – or, indeed, any useful response at all. Some
project-level problems either cannot be fixed, or will not
be fixed. You might hear something along the following
lines:

It's not a bug – it's a mis-used
characteristic of the system. We need to

educate our users.

or

We can't do anything else within this
technology – there is no other solution.

5.3. The Big Squeeze
Testing may have been shortened, or required to take a
late change. The reduced opportunity to find the bug
can mandate focussed testing, which is more likely to
miss a coincidental bug that larger scale, more diffuse
testing might have picked up.

This situation can be the trigger to initiate a
sledgehammer response: to stop late changes, or to try
mandatory automated regression testing in an sttempt to
introduce faster, wider testing. To be effective, such
solutions need to be all-encompassing and so can
introduce on the one had unacceptable friction, and on
the other hand, impossible engineering.

A better solution might be to use a different technique;
greater inspection of code related to late changes, or an
understanding and acceptance of the gambles involved
in risky behaviour. If your environment regularly ships
last-minute bugs to the test team, you may have few
alternatives but to ship those bugs to the customer.

6. Issues of management

6.1. Avoid monotony
If concentrating on one approach misses bugs outside
that approach, then diversity is key. Spending time
thinking of an alternative and testing within it may
rapidly reveal problems in testing that otherwise would
be rapidly revealed in production.

Here are some scales, and some monotonic approaches,
that may be worth considering. You should be able to
think of more. How does your testing stack up?

• action : observation
• design : coincidence
• all-scripted : all exploratory
• automated : manual
• reductionist : holistic
• functional : non-functional
• up-stream : down-stream
• test data : production data
• rationality : randomness
• Driven only by risk
• Driven only by requirements

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 6

• Single-user
• Available resources
• Co-operative systems cooperating
• Clean data
• Clean environment

6.2. Phases
Different parts of testing have different opportunities to
find bugs. While it is commonly agreed that the earlier a
bug is found, the cheaper it is to fix, it may not be
possible to find all bugs early.

For instance, individual components may show
reasonable throughput, but when integrated, bottlenecks
emerge. Integrating a system may reveal a need for
special cases and new error-handling. Emergent
behaviours do not tend to show up at unit test.
However, broader observation may reveal side-effects,
and considerations of exploitation and attacking
behaviour can reveal bugs that are hidden – but fixable
– in earlier phases.

Bugs that are found too late tend to be intermittent, as
their immediate causes and effects are indirectly related
to the input and output of later test phases. Their depth
may mean that they have wide-ranging consequences,
and if they are fundamental to the system, there may be
a cost related to test maintenance or regression testing.

6.3. Metrics
The metric 'Defect Detection Percentage' can be used to
summarise overall figures of bugs that have been missed
in testing. While no substitute for detailed study of
individual cases, it may reveal collective information
where individual enquiry does not.

DDP has been described by Graham et al [9] and Craig
[10]. It is a measure of what was found, as a proportion
of what could have been found. Typically, it is
calculated as the bug count within a phase as a
proportion of bugs found in that phase and beyond. A
DDP of 100% would imply that no bugs had been found
after the completion of a particular test phase. This
could be taken to show that testing had been highly
effective. Clearly, this interpretation relies on
circumstance; if no-one has reported bugs after the
completion of testing, it may be that the system is not in
use.

As with any metric, DDP comes with caveats. The
method as described pays no attention to severity, and is
available only after the event. It does not allow
comparison between test techniques, only phases. A
level of DDP might be acceptable, based on
characteristics of test environments; usability testing may
not be an appropriate place to pick up some
performance testing bugs. As bugs are found, DDP
inevitably drops, and what was judged good at one
point might be judged poorly with hindsight. Basing key
decisions on DDP can politicise understanding of what
is a defect, and which phase it 'belongs' to. Statistics
from test phases that have the opportunity to find many
bugs by coincidence may give inappropriate value to
the non-coincidental techniques in use.

7. Conclusion
This paper will give small comfort to teams that have no
testers, or teams that have bad testers. However, good
testers are engaged in a continual learning process, and
will take the opportunity to learn from their problems. In
the appendix, I have included the questions that helped
me develop my case studies; they may be of use in
developing your own.

It can be informative to study bugs that have been
caught by others, and to ask yourself if your team might
have caught them. Check back issues of STQE/Better
Software’s semi-regular feature Bug Report (for an
example, see Doug Hoffman’s fine article Exhausting
Your Test Options [11]). Look through bug taxonomies
from Kaner et al [12], Beizer & Vinter [13],
Vijayaraghavan [14]. Ask yourself: would the tests you
design have caught the bugs? Would you have had the
opportunity to trigger and to observe them by
coincidence? Would you have recognised the bug if you
had?

As testers, we should be able to ask such pointed
questions of ourselves, and of our teams, and to use
them as the basis of our own process improvements.

7.1. Bullets, please
• Big bugs are often found by coincidence
• Recognise monotony and introduce diversity
• Learn from your mistakes

8. Acknowledgements
I would like to acknowledge the contributions of the
many people and teams who have been part of my own
ongoing learning process. Particular credit should go to
those individuals who were happy to let me use my case
studies – you shall remain forever anonymous! Specific
thanks are due to James Bach for hitting me with the
exercise in Case Study 09: Not Random Enough.

9. References
[1] Robinson, H, Using Poka-Yoke Techniques for
Early Defect Detection , STAR’97,
http://www.geocities.com/harry_robinson_testing/pokas
oft.htm

Also see Grout’s Poka-Yoke Page,
http://csob.berry.edu/faculty/jgrout/pokayoke.shtml

[2] Reid, S et al, BS 7925-2:1998 Software
component testing http://bsonline.techindex.co.uk/ or,
more cheaply in draft from:
http://www.testingstandards.co.uk/Component%20Testi
ng.pdf

[3] Kaner, C, Software negligence and testing
coverage, (Keynote address) Software Testing, Analysis
& Review Conference (STAR), Orlando, FL, p. 313, May
16, 1996.
http://www.kaner.com/pdfs/negligence_and_testing_cov
erage.pdf

[4] Kaner, Bach, Pettichord, Lessons Learned in
Software Testing, (Wiley, 2002), Lesson 283 “Use
diverse half-measures”

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 7

[5] Miller, Fredricksen, So, Fuzz Testing of
Application Reliability, (University of Wisconsin, 1989)
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

[6] Whitaker, J, How to Break Software, (Addison-
Wesley, 2003)

[7] Lyndsay, J, A Positive View of Negative Testing,
(Keynote address, STAREast, 2003)
http://www.workroom-productions.com/papers.html

[8] Lyndsay, J, The Importance of Data in
Functional Testing, (Quality Week 2001)
http://www.workroom-productions.com/papers.html

[9] How to measure test effectiveness using DDP
(Defect Detection Percentage),
http://www.grove.co.uk/pdf_Files/DDP_Tutorial.pdf

[10] Systematic Software Testing by Rick D Craig,
Stefan P Jaskiel p277

[11] Hoffman, D, Exhausting Your Test Options,
(STQE magazine, Jul/Aug 2003 (Vol. 5, Issue 4)), p10-11
http://softwarequalitymethods.com/Papers/Exhaust%20O
ptions.pdf

[12] Kaner, Falk & Nguyen, Testing Computer
Software, 2nd Edition (Thompson, 1993)

[13] Beizer, Vinter Bug Taxonomy and Statistics
(2001) http://inet.uni2.dk/~vinter/bugtaxst.doc

[14] Giri Vijayaraghavan, A Taxonomy of E-
Commerce Risks and Failures. (Master's Thesis, Florida
Institute of Technology 2002).
http://www.testingeducation.org/a/tecrf.pdf

10. Appendices

10.1. Case Studies
The following case studies are drawn from my own time
in testing: I’ve been involved in doing, managing or
assessing each of these tests. I’ve tried to keep these case
studies as accurate as possible, drawing on my notes
and bug reports if possible. Any inaccuracies are my
own responsibility.

I’ve tried hard to avoid including identifying details. If I
was under a non-disclosure agreement, I’ve approached
the people or organisations involved before including
the case studies here. Some minor details have been
changed to protect anonymity.

Case Study 01: What do you mean, Quarterly Billing?

Discovery: I was presenting intermediate test
results to the client. The client said "That's great for our
monthly customers – are you taking the same approach
with our quarterly billed customers?". We had no tests
for quarterly-billed customers. The immediate effect was
that we had to write and execute some new test cases,
re-design some existing tests, and take an operationally
different approach to cycling the billing system.

Testing: We didn't spot this bug because we'd
gone straight from the system specification to scripted
tests – and had missed the one place where this was
stated explicitly. We were also relying on a mock-up of
customer data, which had no quarterly-billed customers.
We hadn't presented the ideas of our tests to the
business/analysts/designers – and hadn't absorbed
requirements, done a sense-check or peer review.

Resulting Change: If I have to derive a "complete" set of
tests from a document, particularly if the tests involve
permutations, I now consider taking an intermediary
step of making tables to describe an aspect of the
system. This abstraction is easier to communicate, to
update and to use in test design (and may ultimately
become part of the primary documentation). In this case,
I'd have made a table of all the things that characterised
accounts in a way that mattered to the business (as
columns), and the different ways those characteristics
could appear (values in the columns). If I did this
reasonably, I would have a column labelled ‘billing
period’, with just the one value ‘monthly’. I hope that I
would question my assumptions at this point!

Case Study 02: Too many boxes

Discovery: A software+hardware system seemed
reliable in the lab. However, it was unreliable in live
operation. With hundreds of separate installs, it seemed
that every day a new installation failed, and would need
to have an engineer dispatched to fix it. The underlying
issue was a hardware failure, and the fix was a manual
re-boot; but the hardware failure prevented the system
from re-booting automatically.

Testing: The test lab had two working systems.
To have a chance of seeing this bug, the systems would
have had to be left running for many tens of days.
Although each system automatically re-booted each day

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 8

to avoid encountering long-run-time bugs, this fault was
unexpected – indeed, it was not recognised as a system
fault until it had happened many times for the customer.

Resulting Change: Both supplier and acquirer recognised
that these faults would be hard to see in a test lab
without unavailable investment in time and kit. They
introduced a phased pilot, looking to extrapolate live
reliability from measured failures over tens of days in
dozens of installations. They also used more internal
logging for diagnosis, and paid more attention to bugs
found in live.

Case Study 03: Too many errors

Discovery: Found in live operation, after an
unrelated failure caused some of the input data to
become invalid. Each invalid record was put into a
'suspense' area for later processing – but the numbers
involved went from 10s a day to 100,000s an hour. The
suspense system rapidly consumed its available disk
space, and manual tools and processes designed to
resolve individual records were swamped. Without
suspense handling, the system refused to process more
input. Another queue started to build, SLAs fell like
dominoes, while the big kit stood idle…

Testing: Bug was missed because no testing
was done on performance of the error-handling system.
Performance testing was itself restricted by kit
availability – but limited worst-case analysis did not
cover this situation and flag it up as a potential problem.

Resulting Change: Paid more attention to error-handling
systems and worst-case scenarios. Started to draw
diagrams of 'load pressure' – the external stresses on a
system and the ways it dealt with those stresses
internally.

Case Study 04: Too many files

Discovery: In live, maximum throughput seemed
to be rather less than expected, causing unacceptable
delays in processing time. We observed that the system
would process a large queue more slowly than a small
queue – and this was related to the number of files in
the queue, rather than the total amount of information to
process. The processing system made less use of its CPU
at times of high load than at times of medium load, as it
was waiting for a much smaller delivery system to hunt
through a large list of accumulated files for the 'next'
file.

Testing: We did not observe this in testing
because the files that were created were named in a way
that meant that the 'next' file was also the first file in the
directory list, so the delivery system spent less time
looking for it.

Resulting Change: We modified our test data generation
to give input files more realistic names. I became more
sceptical of predicting live performance based on test
system bottlenecks, and paid more attention to
modelling the system.

Case Study 05: Conflict of interests

Discovery: When the system went live, it took
hours to initialise. This would have been acceptable, but
the system needed to be restarted every day to take in

new configuration data. The slow startup was driven by
a design decision to get everything into memory, and
was based on a need for fast performance while
running. The daily restart was driven by a need to avoid
time taken by a record-to-record choice of which
calendar-driven set of configuration data to apply –
again, based on a need for fast performance.

Testing: Initialisation time was ignored
because the test system was small, and the initialisation
was of test data. Any bugs in production would be
'tuned out'. The conflict in design decisions (or
requirements, depending on viewpoint) was not seen by
testing because the design was opaque to the test team
and to the client. The opacity did not result in
independence, but obscurity.

Resulting Change: I try to understand how the system's
operators expect to use or control it, and how its
designers expect it to work – and to spot and question
differences before go-live.

Case Study 06: Compounding errors

Discovery: On the first day of live use, the
previously working and piloted system was
unresponsive and eventually crashed. The central server
had many satellite systems – on the day before go-live,
they'd been loaded with live information. This was
partly corrupt; when the clients were turned on, they
asked the server to resend the information. This took
minutes per client (a known characteristic) – but worse,
did not scale well. The satellite systems waited patiently
for hours to receive the information – their users were
impatiently locked out. The users (as might be expected)
rebooted their satellite systems…

Testing: The data corruption was related to
record size. It was not recognised because no test
existed for it in unit testing, and system testing relied on
unit testing for 'edge-case' tests. Being a test-driven
development, no code existed to deal with large data –
so the tests executed all the code, and the full test suite
passed. The scalability of re-load had not been tested, as
the scenario was considered to be unlikely.

Resulting Change: The situation provided timely
reinforcement for me that TDD produces systems that
give you a level of confidence that things are working –
but with very little information about risk or emergent
behaviours. I started to think of extrapolation of
interacting characteristics and risks as an analysis
problem.

Case Study 07: Big Pictures

Discovery: The website took over a minute to
load. The lion's share of this time was a large
background picture. This was noticed during beta
testing, after many weeks of functional and usability
testing.

Testing: The in-house test team had
broadband access, and did not notice the loadtime.
They concentrated on functional testing. Although they
had access to static test tools that would have flagged
this (and other errors), they did not use them as most of
the pages were dynamically generated based on a
session key, and were not well suited to the available
tools.

 James Lyndsay, Workroom Productions Ltd.

Things Testers Miss v 1.0 9

Resulting Change: Improved use of static tools and pre-
beta user observation.

Case Study 08: Inspector Gadget

Discovery: While fixing an observed bug in some
of my own code, I found a coding error that I had not
noticed during testing.

Testing: The coding error was directly
observable in only 2 out of >600 permutations – and
moreover, differentiating correct from incorrect without
an oracle was not trivial. It was far simpler to see the
bug during inspection.

Resulting Change: I inspect my code with greater
precision. In particular, where individual lines do similar
things, I try to construct and format the code to allow
me to directly compare the differences between lines. I
also use printouts.

Case Study 09: Not random enough

Discovery: This was an exercise given by one
tester to another – the target bug was described, but I
had to find evidence for it myself. The target bug is to do
with validation; the system says your input is invalid for
some valid inputs. The input is four sets of numbers, and
manual validation is obvious. It took a while to see the
bug, but there's a simple technique that would have
seen it faster. Why didn't I use this technique?

Testing: I've got my test results. Looking back
over them, most tests have a rationale – either progress
down a particular path, or a new path entirely. I try lots
of good ideas – and still don't see the bug. I'm looking
for the system's patterns of behaviour – but what I don't
see are my own patterns – and how they're skewing my
test.

Resulting Change: All bugs are obvious, if you know
where to look. It turns out this one's obvious if you don't
know where to look. Choosing random behaviour, and
picking specifically the right way to be random was key
to this one. I don't want to give more away…

Case Study 10: It’s the data, stupid

Discovery: Customer bills were related to
distance between known postcodes, calculated on the
latitude/longitude of the postcodes. Certain customers
were always billed at the maximum amount. On
investigation, it became clear that this was because their
correct postcode was incorrectly linked to a location in
the middle of the North Sea.

Testing: Functionally-focussed testing had
verified the distance calculation and related billing – but
no attention had been paid to the quality of the third-
party data.

Resulting Change: Where data is to be used by a live
system, I consider running sense-checks on the data
before it is used. It can be important to put such data
under configuration control, not only to restrict
unauthorised change, but also to spot changes.

While developing these case studies, I tried to keep the
following questions in mind. I hope they are useful
when thinking about your own situations.

Discovery: What was the bug? Had it already
had an impact on the business or project? When was it
found compared to when you had the opportunity to
find it? How was it recognised – was the underlying fault
found itself, was a directly related activity noticed, or did
it take some diagnosis of an event or an emergent
property before the flaw was acknowledged?

Testing: Why do you think the bug was not
spotted during your own testing? How could it have
been seen? Do these observations fit neatly into
problems with planning / execution / observation /
analysis? With hindsight, what activity might you have
chosen to leave out to get the time to see the bug? What
information would you have been able to collect that
might have helped you recognise / make that decision?

Resulting change: Did missing this bug tangibly change
the way you approached testing? How did the missed
bug affect the way you tested? How did it affect your
management of the task and the procedures you may
have been working within? Was your organisation
affected by the fact that the bug was missed (as distinct
from any effect the bug itself may have had)? Were
these changes generally for the good? Were there
unanticipated consequences of any changes?

What was the important context?

Don’t spend time justifying doing what you did.

Don’t simply say that you would have done a different
job if you'd had more time / kit / people.

I’d be delighted to learn from your case studies, and to
post them for others to learn from: please send them to
jdl@wokroom-productions.com.

10.2. Rights
This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 2.5 License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/2.5/ or
send a letter to Creative Commons, 543 Howard Street,
5th Floor, San Francisco, California, 94105, USA.

